

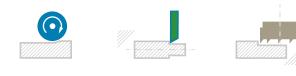
AMADA MACHINE TOOLS AMERICA, INC.

Amada Machine Tools America

With more than 70 years of industry experience, Amada Machine Tools America is committed to helping our customers deliver dependable service and top-quality work with exceptional sawing solutions.

application.

Market-Leading Quality–We believe quality Proven Accuracy–We help you take your work begins with quality tools designed and built from the ground up to deliver outstanding performance time after time.


function and configuration we offer has been developed to address the needs of our customers.

A History of Cutting-Edge Manufacturing

provide our customers with increased productivity and reliability.

Amada also offers another unique advantage in that we manufacture our own bandsaw blades. This allows you to precisely match the characteristics of the blade to the machine to achieve optimum cutting performance, no matter what material you're working with.

TECHNOLOGIES OF AMADA

GRINDING TURNING

BUD DOTT

MILLING

	Amada Machine Tools America	1
SAW BLADES		2
	Finding the Right Blade	2
	AXCELA B Series	4
	AXCELA G Series	5
	AXCELA S Series	6
	MAGNUM HI-LO	7
	HI-LO	8
	CHIP BREAKER	9
	SGLB	10
	COBALT8	11
	SMARTCUT BAND	12
	PROTECTOR EX M42	13
	PROTECTOR	14
	MGLB	15
	DUOS	16
	Circular Saw Blades	18

Whatever your sawing needs, we have the right solution for your specific

work to the next level and exceed your customers' expectations.

Reliable Productivity—We understand Customer-Driven Innovation-Every feature, productivity is the heart of your business, and we can help you optimize it in multiple ways.

Amada Machine Tools was founded on the manufacturing of saws back in 1946. Since that time, our goals have always been to

Because we manufacture our own blades, we're able to ensure we've got the right blades—in stock—when you need them. And we have expert engineers with years of industry experience on staff to answer any questions you might have.

SAWING

Saw Blades

Finding the Right Blade

No matter what kind of sawing capabilities you need, these blades deliver the proven quality and performance that have made Amada the trusted choice for productivity and reliability. Using the chart below, you can select the blade that is best suited for the type and shape of the material to be cut.

Roll-formed section	Structural steel	Bundled small-diameter material	Mild s non-f	steel, errous i	*1 netal	Tool s pre-h	steel, ardened	steel		vork die s less stee			er heat- sting alloy	/
A36, 40, 45, 50,	55, 1008, 1012	1008, 1095, 5015, 4118, 4320			P-2, S-2, L-6, D-2		H-13, 304, 17-4PH		INCONEL, Ti-6L-4V		óL-4V			
Thin wall C-shaped	Thick wall O H-beam H-bea	-4"	Small ~4"	Medium 4~16"	Large 16"~	Small ~4"	Medium 4~16"	Large 16"~	Small ~4"	Medium 4~16"	Large 16"~	Small ~4"	Medium 4~16"	Large 16"~
			-		-	_	Fx	cluding	non-fer	rous meta	1	_	_	
												-		_
			T											
				_							-		-	
		_		-									-	
	_	_								-	_	-	_	-
	_	_								_		_		
		_	_							_	_			_
					SI	nartcut	Band SC	LB		Smar	tcut Bar	nd MAGN	IUM HI-L)
1	VS Type: Rolled La	rge Size H-Beam					nen a ro		ed large	-size H-b r, pinchi	eam is			
						а"		ide set)	type is	ge to the availabl				

*1: Non-ferrous metals referred to in this chart are mainly aluminum, aluminum alloy, copper, and copper alloy. These metals may be equivalent to hard-to-cut materials and even harder in some cases. When using a special alloy, consult Amada first.

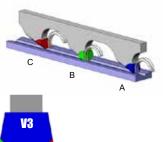
*2: The hardness of the tooth tip represents Amada's average value. It is adjusted so some extent according to the types and sizes of the products.

The minimum requirement for cutting is that the tooth tip is harder than the material to be cut. In order to ensure economical cutting, however, the tooth tip should be a minimum of twice as hard as the material to be cut. This is a reference guide only.

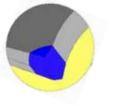
Blade 1	type	Edge material	Hardness of tooth tip (Hv) *2	Wear resistance Chipping resistance	Features
AXCEL	A B	Carbide Tip	1600	****	Highly efficient standard carbide-tipped bandsaw blade that excels on hard-to-cut materials like titanium and nickel-based alloys.
AXCEL	A G	Carbide + EXCOAT-DP	1600 + 2800	* * * * * * * *	High-quality carbide tips and dovetail tooth shape provide outstanding cutting speed for hard-to-cut materials.
AXCEL	A S	Carbide Tip	1600	* * * * * * *	A unique design and precision grinding of each tooth provide excellent performance with a wide range of materials.
MAGNU	UM HI-LO	Amada M71 HSS	1000	* * * * *	New, high-performance edge material with specially designed set and tooth geometry. Appropriate for hard-to-cut materials, including super heat-resisting alloys.
HI-LO		M42 HSS	950	* * * * *	Special tooth design for faster cutting and longer blade life when cutting work-hardened materials.
CHIP B	BREAKER	M42 HSS	950	*** **	Special tooth design reduces cutting resistance while maintaining penetration. Suitable for a wide variety of steel types and sizes, from mild steels to hard-to-cut alloys.
SGLB		M42 HSS	950	* * * * *	Suitable for a wide variety of steel types and sizes, from mild steels to hard-to-cut alloys.
COBAL	Τ8	Amada Modified M42 HSS	930	** ***	General-purpose Amada-modified M43 blade ideal for cutting mild steel and structural steel. The "Chip-Curler" tooth shape and unique set patter provide longer blade life.
SMART	ICUT BAND	Amada M71 HSS M42 HSS	1000 950	**** * *** **	Thinner versions of the SGLV and MAGNUM HI-LO blades designed specifically for the PCSAW330.
PROTE	CTOR EX M42	M42 HSS	950	*** ****	Designed for the structural steel industry, the tooth geometry virtually eliminates tooth chipping, plus the M42 edge provides abrasion resistant for extended blade life.
PROTE	CTOR		900	* * * * * * *	A special Amada-modified M42 blade exclusively for structural steel and profiles. Incorporates a unique chip-resisting feature.
MGLB		Matrix HSS (M42 HSS)	900	* * * * *	An economical Amada-modified M42 blade, appropriate for small-size mild steel and general-purpose applications.
DUOS			900	* * * * * * *	For thin-walled tubes to small-size solids of mild steel.
CIRCU SAW B				-	Designed for accurate cuts at higher cutting rates with high-quality sawing-grade carbide.

Blade Type Selection

AXCELA B Series



AXCELA B Series Carbide-Tipped Blade for Hard-to-Cut Materials


The highly efficient AXCELA B series of bandsaw blades offers a unique tooth design that delivers outstanding performance in hard-to-cut materials, such as titanium and nickel-based alloys. The AXCELA B series also has additional design features that ensure high performance.

Features

Tooth shape optimized to match cutting applications—The S3 (three-pitch pattern, set tooth shape) design excels in cutting heat-resistant steel, Inconel, nickelbased alloys, titanium-based alloys, hard material (50HRC), hard chromium plate, copper alloy, brass, bronze, etc.

Sharp edge surface—Enhanced cutting performance comes from high-precision grinding of each tooth surface.

SPECIFICATIONS	
EDGE MATERIAL	Carbide
HARDNESS OF TOOTH TIP	1600 HV
WEAR RESISTANCE (1-5)	* * * * * (5 Stars)
CHIPPING RESISTANCE (1-5)	* * (2 Stars)

The hardness of the tooth tip represents Amada's average value. It is adjusted to some extent according to the types and size of the products.

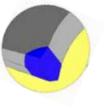
AXCELA G Series High-Performance Carbide-Tipped Blade

With high-quality carbide tips and a dovetail tooth shape, AXCELA G blades deliver outstanding cutting speeds for hard-to-cut materials.

Features

Carbide tooth tips—The kerf-dispersing tooth shape effectively reduces cutting resistance of high-alloy steel.

EXCOAT-DP—This coating provides a high degree of hardness, oxidation resistance, and adhesion strength-it's the ultimate coating for bandsaw blades.


Advantages

- Less tooth vibration
- Precision-ground teeth

Benefits

- Better finish
- Faster cutting
- Longer life

Tooth tip microchamfer—The microchamfer on each tooth top helps the blade achieve ultrahigh cutting rates and reduces tooth chipping.

HARDNESS OF TOOTH WEAR RESISTANCE (1-

CHIPPING RESISTANC

average value. It is adjusted to some extent according to the types and size of the products.

Bimetal

Amada

Carbide

AXCELA B

(Ti-6AI-4V 12" x 12")

65-80% reduction in cutting time

90 min

15~30 min

Availability

BLADE	BLADE	PITCH (INCHES)					
WIDTH	THICKNESS	0.9/1.1	1.4/1.6	1.8/2	2/3	3/4	
1"	0.035"					•	
1-1/4"	0.042"				•	•	
1-1/2"	0.050"		•	•	•	•	
2"	0.063"		•	•	•		
2-5/8"	0.063"	•	•				

Availability MANIIFACTURED

BLADE	BLADE	PITCH (IN	PITCH (INCHES)		
WIDTH	THICKNESS	1.4/1.6	1.8/2		
1-1/2"	0.055"		V		
2"	0.063"	V	V		
2-5/8"	0.063"	V	V		

V: Variable Positive Rake

Amada Lineup of Saw Blades 4

BLADE WIDTH 1-1/2" 1-1/2" 2" 2-5/8" 2-5/8"

AXCELA G Series

• Greater wear resistance than bi-metal blades • Higher heat resistance than bi-metal blades

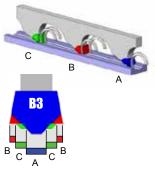
	Carbide + EXCOAT-DP
HTIP	1600 + 2800 HV
-5)	* * * * * (5 Stars)
CE (1-5)	* * * (3 Stars)

The hardness of the tooth tip represents Amada's

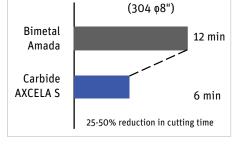
WELDED TO LENGTH

E	BLADE	BLADE	PITCH (INCHES)				
Η	THICKNESS	LENGTH	0.9/1.1	1.4/1.6	1.8/2		
	0.055"	15'0"			V		
	0.055"	15'6"			V		
	0.063"	20'0"		V	V		
	0.063"	22'11"	V	V	V		
	0.063"	27'3"	V	V			

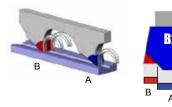
AXCELA S Series


AXCELA S Series Carbide-Tipped Blade for a Wide Range of Applications

The highly efficient AXCELA S series offers a unique tooth design that delivers superior performance with a wide range of materials.


Designed to excel in mild steels, tool steels, stainless steels, and non-ferrous materials, the AXCELA S series offers two pitch patterns to match your cutting applications.

Features


D3 (three-pitch pattern, dovetail tooth)— Enhanced cutting performance comes from Kerf-cleaning tooth design effectively reduces high-precision grinding of each tooth surface. cutting resistance for hard-to-cut materials and large cross-sections. For 0.9/1.1P, 1.4/1.6P.

D2 (two-pitch pattern, dovetail tooth)—This tooth design improves the precision of a cut surface. For 1.8/2P, 2/3P, 3/4P.

COMPARISON

Availability

		PITCH (INCHES)						
BLADE WIDTH	BLADE THICKNESS	D3	D3	D2	D2	D2		
		1.8/2	2/3	3/4				
1"	0.035"					•		
1-1/4"	0.042"			•	•	•		
1-1/2"	0.050"		•	•	•	•		
2"	0.063"		•	•	•			
2-5/8"	0.063"	•	•					
3"	0.063"	•						

MAGNUM HI-LO Patented Varying Tooth Height and Set M71 Blade

With their special alloying technology, MAGNUM HI-LO blades achieve HRC 70 tooth hardness. They maintain positive cutting action and outlast other blades in production cutting of largediameter work-hardened steels and nickel-based super alloys with tensile strengths of up to 164,000 psi.

Features

- 15-degree positive rake angle
- Hardness of HRC 70
- HI-LO tooth height
- Patented M71 high-speed edge

Advantages

- High heat resistance
- High wear resistance
- Higher tooth hardness than M42 bi-metal blade
- Reduced cutting resistance

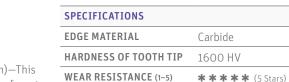
Benefits

Increased accuracy

SPECIFICATIONS

EDGE MATERIAL

HARDNESS OF TOOTH


WEAR RESISTANCE (1 CHIPPING RESISTAN

average value. It is adjusted to some extent

Availability

BLADE	BLADE	PITCH (INCHES)					
WIDTH THICKNESS		0.75/1.1	1.1/1.5	2/3	3/4		
1-1/4"	0.042"			V	V		
1-1/2"	0.050"		V	V	V		
2"	0.063"		V	V	V		
2-5/8"	0.063"		V				
3"	0.063"	V	V				

V: Variable Positive Rake

CHIPPING RESISTANCE (1-5) ** (2 Stars)

The hardness of the tooth tip represents Amada's average value. It is adjusted to some extent according to the types and size of the products.

MAGNUM HI-LO

• Faster cutting on difficult-to-cut materials • Faster cutting on large-diameter materials

• Longer life on difficult-to-cut materials

	Amada M71 HSS
H TIP	1000 HV
1-5)	**** (4 Stars)
ICE (1-5)	★ (1 Star)

The hardness of the tooth tip represents Amada's according to the types and size of the products.

HI-LO

HI-LO

Varying Tooth Height Design, M42 Welded Edge Blade for Metal-Cutting Bandsaws

The HI-LO blade features a high-and-low tooth height design and a 15-degree rake angle. The blade is ideal for cutting hard steels.

Features

- 15-degree positive rake angle
- Hardness of HRC 68-69
- Patented HI-LO tooth design
- Specially designed tooth form

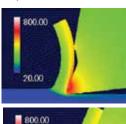
Advantages

- High heat resistance
- High wear resistance
- Reduced cutting resistance

Benefits

- Faster cutting on difficult-to-cut materials
- Longer life on difficult-to-cut and workhardened materials
- Straighter cutting

SPECIFICATIONS	
EDGE MATERIAL	M42 HSS
HARDNESS OF TOOTH TIP	950 HV
WEAR RESISTANCE (1-5)	* * * (3 Stars)
CHIPPING RESISTANCE (1-5)	* * (2 Stars)


The hardness of the tooth tip represents Amada's average value. It is adjusted to some extent according to the types and size of the products.

CHIP BREAKER Patented Gullet Design

The CHIP BREAKER blade is designed to reduce the heat generated at increased chip loads. With reduced tooth stripping and breaking, this equates to the lowest possible cost per square inch of metal cutting.

Features

• Reduces heat generated at increased chip loads

• Prevents scoring on gullets

Advantages

Reduced tooth stripping

Reduced chip weld

• Reduced blade breakage

Benefits

- Higher cutting rates
- Increased blade life

SPECIFICATIONS

EDGE MATERIAL HARDNESS OF TOOTH

WEAR RESISTANCE (1-

CHIPPING RESISTAN

average value. It is adjusted to some extent

Availability

BLADE	BLADE	PITCH (INCHES)					
WIDTH	THICKNESS	0.75/1	1.1/1.5	2/3	3/4	4/6	
1"	0.035"			V	V	V	
1-1/4"	0.042"			V	V	V	
1-1/2"	0.050"		V	V	V		
2"	0.063"	V	V	V			
2-5/8"	0.063"	V	V				
3"	0.063"	V	V				

Availability

BLADE	BLADE	PITCH (INCHES)					
WIDTH	THICKNESS	0.75/1	1.1/1.5	2/3	3/4	4/6	
1"	0.035"				V	V	
1-1/4"	0.042"			V	V	V	
1-1/2"	0.050"		V	V	V	V	
2"	0.063"		V	V	V	V	
2-5/8"	0.063"	V	V	V	V		
3"	0.063"		V				

V: Variable Positive Rake

CHIP BREAKER

• Reduced backing fatigue

	M42 HSS
HTIP	950 HV
-5)	* * * (3 Stars)
CE (1-5)	* * (2 Stars)

The hardness of the tooth tip represents Amada's according to the types and size of the products.

SGLB

SGLB High-Production M42 Bi-Metal Blade

The SGLB was designed to cover a broad range of cutting applications with maximum efficiency in sawing wear-resistant tool steels. The blade's tough M42 cobalt edge resists heat and abrasion, while the varied pitch tooth form expands the range of sizes and shapes that can be sawed successfully without changing blades.

Features

- 7-degree positive rake angle
- Hardness of HRC 68-69
- M42 cobalt high-speed steel edge
- Specially designed tooth form

Advantages

- Better tooth penetration
- High heat resistance
- High wear resistance

Benefits

- Fast cutting rates
- High production rate
- Long life on moderate to difficult-tocut materials
- Low cost per cut

SPECIFICATIONS	
EDGE MATERIAL	M42 HSS
HARDNESS OF TOOTH TIP	950 HV
WEAR RESISTANCE (1–5)	* * * (3 Stars)
CHIPPING RESISTANCE (1-5)	* * (2 Stars)

The hardness of the tooth tip represents Amada's average value. It is adjusted to some extent according to the types and size of the products.

COBALT8 Amada-Modified M42 High-Speed Bi-Metal Blade

This general-purpose blade is ideal for cutting mild steel and structural steel. The "Chip Curler" tooth shape and unique set pattern deliver exceptional performance and longer blade life.

Features

• Amada-modified M42 high-speed steel edge • Enhanced chipping resistance • "Chip Curler" tooth shape

Advantages

• Improved tooth penetration

steel shapes

Benefits • General-purpose blade • Low cost per cut

The "Chip Curler" tooth shape improves chip removal and reduces the impact on the bottom of the gullet, resulting in longer life. COBALT8 is ideally suited to cut mild steel.

The distinctive set pattern reduces noise and vibration during cutting, resulting in much longer blade life and noticeably better cutting performance, as well.

SPECIFICATIONS EDGE MATERIAL

HARDNESS OF TOOTH WEAR RESISTANCE (1-

CHIPPING RESISTAN

average value. It is adjusted to some extent according to the types and size of the products.

Availability

BLADE	BLADE	PITCH (INCHES)								
WIDTH	THICKNESS	0.75/1.1	1.1/1.5	1.5/2	2/3	3/4	4/6	5/7	6/10	8/12
3/4"	0.035"						PR			
1"	0.035"				MG	MG	PR	PR	S	S
1-1/4"	0.042"		AG		AG	MG	PR	PR	S	
1-1/2"	0.050"		AG	AG	AG	MG	PR	PR		
2"	0.063"	AG	AG	AG	AG	MG	MG			
2-5/8"	0.063"	AG	AG	AG	AG	WS/MG	MG			
3"	0.063"	AG	AG	AG						

S: Standard Tooth, Straight Rake Set | PR: 7-Degree Positive Rake | MG: 10-Degree Positive Rake AG: Positive Rake, Large Gullet Size | WS: Wide Set

Availability

BLADE WIDTH	BLADE	PITCH (INCHES)				
	THICKNESS	2/3	3/4	4/6	5/7	
1"	0.035"		V	V	V	
1-1/4"	0.042"		V	V	V	
1-1/2"	0.050"	V	V	V	V	
2"	0.063"		V	V		

V: Variable Positive Rake

COBALT8

• Longer life for mild steel and structural

Amada-modified M42
high-speed steel
930 HV
* * (2 Stars)
* * * * (4 Stars)

The hardness of the tooth tip represents Amada's

CONVENTIONAL

COBALT8 **COMPARISON OF NOISE** Flat Bar A36 12 mm x 300 mm Blade Speed 60 m/min Cutting Time 1 min. 12 sec.

SMARTCUT BAND

SMARTCUT BAND Specialized Bi-Metal Blade for PCSAW330

These thinner versions of our SGLB and MAGNUM HI-LO blades are ideal for sawing narrow parts from expensive metal bars or blocks. Using SMARTCUT BAND blades gives you twofold cost-saving benefits: reducing material waste/disposal costs and increasing parts yield per bar, resulting in additional profit. And those little savings here and there can really add up!

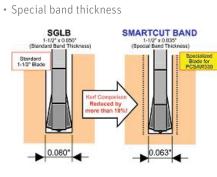
Advantages

Benefits

MAGNUM HI-LO blades

Reduced chip volume

• More than 10% thinner than regular SGLB or


Reduced by more than 25%!

Amada M71

high-speed steel

**** (4 Stars)

Features

SPECIFICATIONS SMARTCUT BAND-SGLB		SPECIFICATIONS SMARTCUT BAND-MAGNU	M HI-LO
EDGE MATERIAL	M42 high-speed steel	EDGE MATERIAL	Amada M7 high-spee
HARDNESS OF TOOTH TIP	950 HV	HARDNESS OF TOOTH TIP	1000 HV
WEAR RESISTANCE (1-5)	* * * (3 Stars)	WEAR RESISTANCE (1-5)	****
CHIPPING RESISTANCE (1-5)	* * (2 Stars)	CHIPPING RESISTANCE (1-5)	★ (1 Star)

The hardness of the tooth tip represents Amada's average value. It is adjusted to some extent according to the types and size of the products.

Availability

SCB-SG

BLADE BLADE		PITCH (INCHES)					
WIDTH	THICKNESS	1.1/1.5	2/3	4/4	4/6		
1-1/2"	0.035"		V	V	V		

SCB-MA

BLADE BLADE		PITCH (INCHES)					
WIDTH	THICKNESS	1.1/1.5	2/3	4/4	4/6		
1-1/2"	0.042"		V	V			

PROTECTOR EX M42 For Structural Steel with M42 Edge

Designed exclusively for use with structural steel, the M42 Edge protects against tooth chipping and delivers high wear resistance. This PROTECTOR EX feature, added to the back face of the tooth tip, prevents excessive cutting.

Features

- M42 cobalt high-speed steel edge—M42 cobalt high-speed steel provides superior wear resistance. Treated with Amada's unique heat treatment technology, this steel exhibits a performance that is highest in the class. It is broadly suitable for cutting general steel through hard-to-cut materials.
- Unique design tooth form—PROTECTOR added on the back face of the tooth tip suppresses excessive cutting and prevents continuous chipping.

• Positive rake tooth angle

• Strong tooth profile—The tooth tip is strengthened to better withstand impact caused during intermittent cutting. At the same time, high cutting efficiency is assured. • Set design—The broaching style set pattern was designed to eliminate pinching, thereby preventing the blade from binding in

the cut.

• Extra-tough shock resistance • Extra-tough tooth strippage resistance

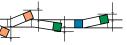
- Extremely long life during intermittent
- structural cutting • Low cost per cut

SPECIFICATIONS EDGE MATERIAL HARDNESS OF TOOT WEAR RESISTANCE (

CHIPPING RESISTAN

The hardness of the tooth tip represents Amada's average value. It is adjusted to some extent according to the types and size of the products.

Availability


BLADE	BLADE	PITCH (INCHES)		
WIDTH	THICKNESS	3/4	4/6	
1"	0.035"	V	V	
1-1/4"	0.042"	V	V	
1-1/2"	0.050"	V	V	
2"	0.063"	V		

V: Variable Positive Rake

Benefits

PROTECTOR EX M42

• Extremely fast cutting on structural steel

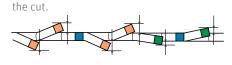
	M42 HSS
H TIP	950 HV
1-5)	* * * (3 Stars)
ICE (1-5)	**** (5 Stars)

PROTECTOR

PROTECTOR **Designed Exclusively for Structural Steel**

The PROTECTOR blade provides excellent resistance against tooth chipping while delivering unparalleled efficiency. The PROTECTOR feature, added to the back face of the tooth tip, prevents excessive cutting.

Features


• Amada-modified M42 high-speed steel edge

Unique design tooth form

The PROTECTOR is added to the back face of the tooth tip, suppressing excessive cutting and preventing continuous chipping.

- Positive rake tooth angle
- Strong tooth profile—The tooth tip is strengthened to better withstand impact caused during intermittent cutting. At the same time, high cutting efficiency is assured.
- Set design—The broaching style set pattern was designed to eliminate pinching, thereby preventing the blade from binding in

• Wide set available—When a large roll-formed H-beam is cut, stress relieving may occur, pinching the blade. In order to prevent damage to the blade, a wide set (WS) type is available for PROTECTOR.

Advantages

- Extra-tough shock resistance
- Extra-tough tooth strippage resistance

Benefits

- Extremely fast cutting on structural steel
- Extremely long life during intermittent structural cutting
- Low cost per cut

SPECIFICATIONS

EDGE MATERIAL	Amada-modified
	M42 HSS
HARDNESS OF TOOTH TIP	900 HV
WEAR RESISTANCE (1-5)	** (2 Stars)
CHIPPING RESISTANCE (1-5)	**** 5 Stars)

The hardness of the tooth tip represents Amada's average value. It is adjusted to some extent according to the types and size of the products.

Availability

BLADE BLADE		PITCH (INCHES)			
WIDTH THICKNESS	2/3	3/4	4/6		
3/4"	0.035"			V	
1"	0.035"		V	V	
1-1/4"	0.042"		V	V	
1-1/2"	0.050"	V/WS	V/WS	V	
2"	0.063"	V/WS	V/WS	V	
2-5/8"	0.063"	V	V/WS	V	

MGLB General-Purpose Matrix Bi-Metal Blade

The MGLB is best suited for cutting structural shapes, tubing, and stacks of mild steel pieces. The MGLB allows bandsaw machines to cut a wide range of material sizes and shapes without requiring a change of blades. Its tough, high-speed steel teeth resist chipping, stripping, and abrasion. It can also tolerate the occasional improper speeds and feeds that are often used by inexperienced saw operators.

Features

- Hardness of HRC 67-68
- Amada-modified M42 cobalt high-speed steel edge
- Specially designed tooth form
- Wide set available—When a roll-formed large-size I-beam is cut, stress relieving may occur, pinching the blade. In order to prevent damage to the blade, a wide set (WS) type is available for MGLB.

Advantages

- High wear resistance
- Tough shock-resistant tooth edge

The hardness of the tooth tip represents Amada's average value. It is adjusted to some extent

Availability

MGLB Straight Pitch, General-Purpose Matrix Bi-Metal

BLADE BLADE WIDTH THICKNESS		PITCH (INCHES)				
		3	4	6	10	14
1/4"	0.035"				V	V
3/8"	0.035"		V			
1/2"	0.035"		V	V	V	V

MGLB Varied Pitch Matrix Bi-Metal

BLADE	BLADE	PITCH (INCHES)						
WIDTH THICKNESS		2/3	3/4	4/6	5/7	6/10	8/12	10/14
3/4"	0.035"		V	V	V	V	V	V
1"	0.035"		V	V	V	V	V	V
1-1/4"	0.042"		V	V	V	V	V	
1-1/2"	0.050"	V	V	V	V			
2"	0.063"	V	V/WS	V				

V: Variable Positive Rake | WS: Wide Set

14 Amada Lineup of Saw Blades

SPECIFICATIONS EDGE MATERIAL

Benefits

• Low cost per cut

HARDNESS OF TOOTH

WEAR RESISTANCE (1

CHIPPING RESISTAN

MGLB

• High production rate

• Long life on mild solid steel, heavy wall tubing, and structural steel

	Amada-modified		
	M42 HSS		
H TIP	900 HV		
-5)	* * (2 Stars)		
CE (1-5)	* * * (3 Stars)		

according to the types and size of the products.

DUOS

DUOS Patented Bi-Metal Blade for Thin-Wall Tubes and Small Solids

DUOS blades are designed specifically for light-duty bandsaws to cover a wide range of cutting applications. No break-in procedure is necessary.

Advantages

Benefits

High production rate

Low cost per cut

• High-quality backing material with an

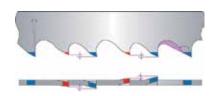
longest possible blade life

and economic metal sawing

tubing, and structural steel

Amada-modified M42 strip ensures the

• Innovative dual tooth and set configuration,


plus proprietary tooth shapes in a HI-LO

configuration, provide the most efficient

• Long life on mild solid steel, heavy wall

Features

• The challenge of selecting the proper blade has been virtually eliminated by the DUOS—most cutting applications can be accomplished efficiently and economically with the DUOS 9/11P.

- The DUOS uses two different tooth and set configurations to control excessive feeding in profile and tubing type materials.
- Adopting a positive rake angle enhances cutting performance in both solid and profile cutting.
- Increasing the chip area of the gullet by utilizing the two-step relief angle is a first for the smaller pitches.
- Time-consuming break-in periods are totally eliminated when using the DUOS.
- DUOS is a blade developed exclusively for the light-duty bandsaw. This design prevents tooth stripping and/or chipping when cutting profiles, while expanding the application to include solid material to the full capacity.

SPECIFICATIONS

EDGE MATERIAL	Amada-modified M42 base matrix HSS	
HARDNESS OF TOOTH TIP	900 HV	
WEAR RESISTANCE (1-5)	* * (2 Stars)	
CHIPPING RESISTANCE (1–5)	* * * * * (5 Stars)	

The hardness of the tooth tip represents Amada's average value. It is adjusted to some extent according to the types and size of the products.

Availability

BLADE WIDTH	BLADE THICKNESS	PITCH
		9/11
1/2"	0.025"	V
1/2"	0.035"	V
3/4"	0.035"	V
1"	0.035"	V
1-1/4"	0.042"	V

V: Variable Positive Rake

Note: Product lineup of DUOS is limited to comparatively small pitches, considering frequency of use. Please use "PROTECTOR" 4/6 or 3/4 pitch when material is outside the application range.

DUOS

(INCHES)

Circular Saw Blades

Circular Saw Blades

Designed for accurate cuts at higher cutting rates, these blades feature the highest-quality sawing grade of carbide.

Features

- Created on state-of-the-art manufacturing
 equipment
- Tested and proven backing material
- Unmatched accuracy and consistency from tooth to tooth
- Pioneers in the manufacturing and development of carbide blades
- Unmatched consistency from blade to blade

Benefits

- Longest possible blade life
- Higher cutting rate
- Minimal or no warpage during cutting operation
- Lowest cost per cut in all types of material
- Minimal burrs, due to consistent chip load
- Accurate cuts with a high-quality surface finish

SPECIFICAT	PECIFICATIONS: CARBIDE			SPECIFICATIONS: CARBIDE FOR STAINLESS		
MODEL	BLADE TYPE	SIZE	MODEL	BLADE TYPE	SIZE	
CMB75	IB75 TCB-CB 285 mm x 2.0 mm x 60 teeth CMB75	TCB-SU	285 mm x 2.0 mm x 60 teeth			
(CM75)	TCB-CB	285 mm x 2.0 mm x 80 teeth	(CM75)	TCB-SU	285 mm x 2.0 mm x 80 teeth	
CMB100 (CM100)	TCB-CB	360 mm x 2.25 mm x 60 teeth	(CM100)	TCB-SU	360 mm x 2.25 mm x 60 teeth	
	TCB-CB	360 mm x 2.25 mm x 80 teeth		TCB-SU	360 mm x 2.25 mm x 80 teeth	
	TCB-CB	360 mm x 2.25 mm x 100 teeth		TCB-SU	360 mm x 2.25 mm x 100 teeth	
CMB150	TCB-CB	460 mm x 2.7 mm x 40 teeth	CMB150	TCB-SU	460 mm x 2.7 mm x 40 teeth	
(CM150)	TCB-CB	460 mm x 2.7 mm x 60 teeth	(CM150)	TCB-SU	460 mm x 2.7 mm x 60 teeth	
	TCB-CB	460 mm x 2.7 mm x 80 teeth		TCB-SU	460 mm x 2.7 mm x 80 teeth	
	TCB-CB	460 mm x 2.7 mm x 100 teeth		TCB-SU	460 mm x 2.7 mm x 100 teeth	

TCB-CB is the former TA-3.

SPECIFICATIONS: CERMET				
MODEL	BLADE TYPE	SIZE		
CMB75	TCB-CR	285 mm x 2.0 mm x 60 teeth		
(CM75)	TCB-CR	285 mm x 2.0 mm x 80 teeth		
CMB100	TCB-CR	360 mm x 2.25 mm x 60 teeth		
(CM100)	TCB-CR	360 mm x 2.25 mm x 80 teeth		
	TCB-CR	360 mm x 2.25 mm x 100 teeth		
CMB150	TCB-CR	460 mm x 2.7 mm x 40 teeth		
(CM150)	TCB-CR	460 mm x 2.7 mm x 60 teeth		
	TCB-CR	460 mm x 2.7 mm x 80 teeth		
	TCB-CR	460 mm x 2.7 mm x 100 teeth		
CMB230	TCB-CR	750 mm x 3.8 mm x 50 teeth		
	TCB-CR	750 mm x 3.8 mm x 80 teeth		

IODEL	BLADE TYPE	SIZE
CMB75	TCB-TI	285 mm x 2.0 mm x 60 teeth
CM75)	TCB-TI	285 mm x 2.0 mm x 80 teeth
CMB100 (CM100)	TCB-TI	360 mm x 2.25 mm x 60 teeth
	TCB-TI	360 mm x 2.25 mm x 80 teeth
	TCB-TI	360 mm x 2.25 mm x 100 teeth
MB150	TCB-TI	460 mm x 2.7 mm x 40 teeth
M150)	TCB-TI	460 mm x 2.7 mm x 60 teeth
	TCB-TI	460 mm x 2.7 mm x 80 teeth
	TCB-TI	460 mm x 2.7 mm x 100 teeth

TCB-TI is the former TI-3.

TCB-CR is the former ST-3.

CIRCULAR SAW BLADES

TCB-SU is the former TA-SUS.

SPECIFICATIONS: CARBIDE FOR PIPE AND TUBE				
MODEL	BLADE TYPE	SIZE		
CMB75	TCB-PT	285 mm x 2.0 mm x 60 teeth		
(CM75)	TCB-PT	285 mm x 2.0 mm x 80 teeth		
CMB100	TCB-PT	360 mm x 2.25 mm x 60 teeth		
(CM100)	TCB-PT	360 mm x 2.25 mm x 80 teeth		
	TCB-PT	360 mm x 2.25 mm x 100 teeth		
CMB150	TCB-PT	460 mm x 2.7 mm x 40 teeth		
(CM150)	TCB-PT	460 mm x 2.7 mm x 60 teeth		
	TCB-PT	460 mm x 2.7 mm x 80 teeth		
	TCB-PT	460 mm x 2.7 mm x 100 teeth		

See Amada Saw Blades at Work

The AMTA Technical Center was created to provide a unique atmosphere for visitors to experience the latest manufacturing technology in action. This stunning 40,000-square-foot facility houses the latest Amada technology in each product group. Much more than just an exhibit, every machine, automation accessory, and software program in the facility is fully operational and ready to empower customers to solve their most challenging manufacturing applications.

Specifications may change without notice at the sole discretion of Amada's Engineering Department.

There may be differences between the specifications described in this catalog and the Amada products actually to the Instruction Manual prior to operation. shipped. Please ask our staff for more detail.

The products in the catalog may be subject to the provisions of foreign exchange and the Foreign Trade Law. materials, and cutting conditions, etc. Please note that When exporting cargo subject to such controls, permission such data are not guaranteed. pursuant to regulation is required. Please contact our business representative in advance when exporting products overseas.

When using our products, safety equipment is required depending on the operational task.

For safe and correct operation, ensure thorough reference

The cutting performance data in this catalog may be affected by temperature, the cutting materials, tool

At **AMADA MACHINE TOOLS AMERICA**, we're committed to your success. More than just a provider of precision metalworking solutions, we're a partner who can help you meet the advanced engineering and manufacturing challenges unique to your industry. Together, we can create the right solution to meet your needs today and empower you to build your business for the future.

AMADA MACHINE TOOLS AMERICA, INC.

www.amadamt.com

MAIN OFFICE

2324 Palmer Drive Schaumburg, IL 60173 tel (847) 285-4800 fax (847) 519-2127

BANDSAW AND BLADE BUSINESS

bandsaws@amadamt.com bladeorders@amadamt.com bandsawparts@amadamt.com bandsawservice@amadamt.com

BRANCH OFFICE

7025 Firestone Blvd Buena Park, CA 90621 tel (714) 739–2111

LATHE AND GRINDER BUSINESS

lathes@amadamt.com grinders@amadamt.com latheparts@amadamt.com grinderparts@amadamt.com latheservice@amadamt.com grinderservice@amadamt.com